

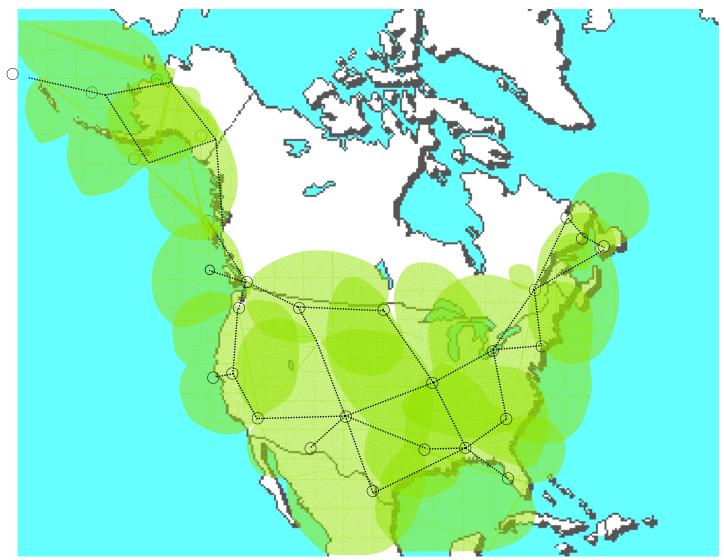
Status of Loran-C Evaluations Federal Aviation Administration

Mitchell J. Narins
Systems Engineer, Navigation Integrated Product Team
AND-702

Workshop on Integrated CNS technologies for Advanced Future Air Transportation Systems

Hosted by the Space Communications Program at NASA Glenn Research Center - May 1st – May 3rd, Cleveland, Ohio

Loran-C in the NAS Today



- Loran-C may be used as a navigation source in both en-route and terminal airspace under both visual flight rules (VFR) and instrument flight rules (IFR).
- No Loran-C approach procedures currently exist in the National Airspace System (NAS).

US Loran-C Chain Coverage

US Loran-C Policy Evolution

\$ FY 1996

- The U.S. Federal Radio-navigation Plan (FRP) announces the intent to terminate Loran-C operations on December 31, 2000.
- The Coast Guard Authorization Act of 1996 required DOT to prepare a report on the future use and funding of Loran-C.

\$ FY 1998

The Administration began discussions in 1998 on the continuation of Loran-C.

FY 2000

FY 1999 FRP states that Loran-C will be "operated in the short term" while its long-term requirement and cost-effectiveness are evaluated.

US Policy Evolution (2)

"While the Administration continues to evaluate the long-term need for continuation of the Loran-C radionavigation system, the Government will operate the Loran-C system in the short term. The U.S. Government will give users reasonable notice if it concludes that Loran-C is not needed or is not cost effective, so that users will have the opportunity to transition to alternative navigation aids. With this continued sustainment of the Loran-C service, users will be able to realize additional benefits. Improvement of GPS time synchronization of the Loran-C chains and the use of digital receivers may support improved accuracy and coverage of the service. Loran-C will continue to provide a supplemental means of navigation. Current Loran-C receivers do not support nonprecision instrument approach operations."

Para 3.2.5 B 1999 US Federal Radionavigation Plan

US Policy Evolution (3)

FY 2001

- Administration/FAA submitted \$20 million budget request.
 - Both House and Senate committees raised Loran-C funding to \$25 million.
- FAA working with USCG during FY 2001 to determine capability of Loran-C to provide landing service with required availability, accuracy, integrity, and continuity.
- FAA will brief USDOT on potential benefits to aviation in using Loran-C following FY 2001 evaluations.
- FAA and USCG is assessing and will project costs of operating and re-capitalizing the system if continuation of system is warranted.

US Program Participants

US Government

- Federal Aviation Administration
 - FAA HQ
 - Navigation Integrated Product Team
 - Flight Standards/System Certification
 - FAA Technical Center
 - CNS Test and Evaluation
- **US** Coast Guard
 - USCG HQ
 - USCG Navigation Center
 - USCG Loran Support Unit

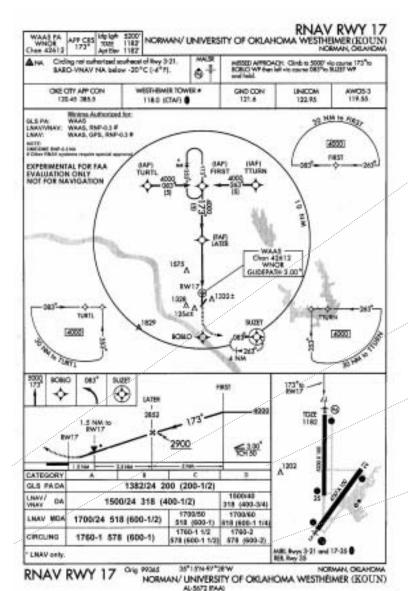
US Program Participants(2)

- Academia
 - US Coast Guard Academy
 - Ohio University
 - Stanford University
 - University of Rhode Island
- Industry
 - Peterson Integrated Geo-positioning
 - Locus, Inc.
 - Illgen Simulation Technologies

Program Logo Collection

Loran-C Program Goals

- Determine if an enhanced Loran-C system can meet the
 - Availability
 - Accuracy
 - Integrity, and
 - Continuity


requirements to support Lateral Navigation (LNAV) during the approach phase of flight, including missed-approach guidance

Determine whether Loran-C can provide other ancillary benefits to aviation

Example of an RNAV Chart

CATEGORY	A	В	¢	D
GLS PADA	1382/24 200 (200-1/2)			
LNAV/ VNAV DA	1500/24 318 (400-1/2)			1500/40 318 (400-3/4)
LNAV MDA	1700/24 51	18 (600-1/2)	1700/50 518 (600-1)	1700/60 518 (600-1 1/4)
CIRCLING	1760-1 57	8 <u>(</u> 600-1)	1760-1 1/2 578 (600-1 1/2)	1760-2 578 (600-2)

Loran-C Aviation Issues

Issues

Potential Mitigations

Availability

Precipitation Static

Loss of Station Power

Lightning

Chain Availability

Tube overloads

Accuracy

Old timing sources

Old timing equipment

Tube technology

H-Field Antenna

UPS

New Lightning Protection

All-in-view receivers

Solid-state transmitters

New cesium clocks

New timing suite

Solid-state technology

Loran-C Aviation Issues (2)

Issues

Potential Mitigations

Integrity

Manual System

Automatic Blink System (ABS)

Continuity

Triad-based approaches

Receiver acquisition time

All-in-view navigation

New DSP technology

Other Potential Benefits



- Loran-C has the potential for providing a transmission path for GPS correction information [i.e., Wide Area Augmentation System (WAAS)] corrections.
 - Potential for providing WAAS signal in areas where geo-stationary satellite coverage is limited, questionable, or unavailable (e.g., Alaska, urban canyons)

Potential Loran-C Comm Capability

Status of FY 2001 Activities

- Flight Testing of H-Field antennas and all-in-view receivers
 - Original testing schedule (Fall 2000) delayed to ensure safety of aircraft static charging system, installation of field mill and measurement equipment, and aircraft structural considerations
 - Testing now scheduled for June 2001
- Testing of all-in-view DSP receivers
 - Preliminary testing on-going at US Coast Guard Academy and Ohio University
 - Tests will be integrated with tests at FAA Technical Center
 - Post-processing algorithms being developed to potentially improve navigation performance

Status of FY 2001 Activities (2)

Loran Data Channel development

- USCG Loran Support Unit, Stanford University,
 Peterson Integrated Geo-positioning, and University of
 Rhode Island have made remarkable progress in this
 area.
- Using Inter-pulse Frequency Modulation (IFM) a 250bps data rate is being achieved.
- Initial on-the-air testing March 2001
- Flight trials planned during May and June 2001
- Alaskan on-site test/demonstration and flight trials planned for August 2001.

Status of FY 2001 Activities (3)

Future Plans

- Work with USCG to develop FY 2002 Project Plan, to include
 - Evaluation and quantification of Loran-C navigation and communications benefits to aviation and other transportation modes
 - Continued re-capitalization of Loran-C system and quantification of Loran-C operational cost reductions
- Share tests results with navigation community as they become available
 - ION
 - GNSS
 - ILA
- Brief RTCA on results of test and evaluation, as promised
- Report results of test and evaluation and recommended near-term course of action to USDOT (mid-FY2002)

Questions